Socitemrec: a Framework for Item Recommendation in Social Networks
نویسندگان
چکیده
Collaborative filtering based recommendation methods focus on user-item information for modeling the user interest. However, in social networks the user interest is influenced by other user interests in the local social circle of the active user. In this paper, considering the homophily of relation to similar interests and similar friends, we propose a social item recommendation framework (SocItemRec). Our framework combines both global interest from the user-item information and local interest from social relation information for recommendations. We evaluate our framework on real world data from Sina Weibo, one of the most popular social network sites in China. The experimental results demonstrate that our framework leads to improved performance of top-k item recommendation.
منابع مشابه
Developing a Recommendation Framework for Tourist by Mining Geo-tag Photos (Case Study Tehran District 6)
With the increasing popularity of sharing media on social networks and facilitating access to location technologies, such as Global Positioning System (GPS), people are more interested to share their own photos and videos. The world wide web users are no longer the sole consumer but they are producers of information also, hence a wealth of information are available on web 2.0 applications. The ...
متن کاملCollaborative Topic Regression with Social Regularization for Tag Recommendation
Recently, tag recommendation (TR) has become a very hot research topic in data mining and related areas. However, neither co-occurrence based methods which only use the item-tag matrix nor content based methods which only use the item content information can achieve satisfactory performance in real TR applications. Hence, how to effectively combine the item-tag matrix, item content information,...
متن کاملA framework for tag-aware recommender systems
In social tagging system, a user annotates a tag to an item. The tagging information is utilized in recommendation process. In this paper, we propose a hybrid item recommendation method to mitigate limitations of existing approaches and propose a recommendation framework for social tagging systems. The proposed framework consists of tag and item recommendations. Tag recommendation helps users a...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملA centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کامل